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Abstract. Using one-dimensional models, we characterize the existence of a disorder line 
(point) in a renormalization group procedure. This procedure is defined in terms of the 

subdominant eigenvalues; this study therefore encompasses uwal disorder lines (where 
the spin-spin correlation function changes), as well as other types of disorder lines (where, 
for instance, theenergy-energycorrelation function changes). I n  the usual case,lhe disorder 
line shows up as a reparatrix between two regions of the Row diagram attracted to different 
paramagnetic sinks. For this case, we also consider, in  the framework of the random phase 
approximation, the dynamical signature of a disorder line: we show that it can be experi- 
mentally detected, especially for disorder lines (poinlr) af the second kind. 
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1. Introduction 

There has been much interest in the concept of disorder lines since they were first 
introduced by Stephenson [ l ]  and by Fisher and Widom [2] in 1969 and much is 
known about them [j, and references thereinj. For exampie, the iorm of the order 
parameter-order parameter correlation function changes at such a line, typically from 
a monotonic to a non-monotonic decay, and the correlation length is minimum and 
non-analytic there [4,5]. However, all bulk thermodynamic functions are analytic at 
the disorder line [6]6. 

Fo; magnetic systems, to which we restrict our study, the order parameter may be 
of dipoiar naiure (e.g. the magnetizaiionj or more compiicaied (quadrupoiar, . , .). 
Following Stephenson [4], one distinguishes disorder lines (or points) of the first (resp. 
second) kind depending on the finite (resp. zero) value of the relevant correlation 
length at the disorder condition. 

Most of the traditional examples, as reviewed in [3], are concerned with exact 
solutions in one and two dimensions. A random phase approximation (RPA) approach 
to usual disorder lines, where the spin-spin correlation function changes, is found in 
[7]. In order to get a more complete approach to this problem, it is therefore of interest 
to study how the presence of a disorder line affects a renormalization group (RG) 

procedure. In a previous paper [8], we have applied the approximate Migdal-Kadanoff 
scheme to the two-dimensional X Y  model (for other RG approaches to disorder lines, 
see [9, IO]), and we have argued that a disorder line would correspond to a change 
nfhehorl;n..rnf+hn Dc rrrnmAllrp l p  Frnm n nnn.mnnntnnm,. tn n mnnntnnnllc Rnl..1 ". "....'.,,"". ". IJ."*uUY.' \"S .LY... I.V..~...Y..U.V.."YI .-" .."",. 
We focus here our attention on simple one-dimensional king models. In section 2, we 
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I There can be non-analyticities in the su(ace free energy, however. 
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define the RG in terms of the eigenvalues of the transfer matrix. The flow diagram is 
obtained, and we identify various disorder lines (usual and generalized). These lines 
correspond to various crossings of the subdominant eigenvalues. Again motivated by 
[8], we consider in section 3 the possible influence of a usual disorder line on the 
dynamics of the system. Since we are primarily interested in the paramagnetic phase(s), 
we use, as in [7], the RPA, and show that disorder lines may indeed influence the 
dynamics, especially those of the second kind. 

2. Renormalization of a one dimensional king model 

Following [SI and [ I l l ,  we consider the king model shown in figure 1. It contains 
nearest-neighbour interactions only, with the horizontal interaction between spins in 
the upper row, L,>O, differing from that between spins in the lower row, -L,<O. 
These two interactions, one ferromagnetic and the other antiferromagnetic, compete 
to shape the form of the short-range order. 

- L3 -L3 
Figure 1. The one-dimensional lsing example studied in section 2. 

A renormalization group is defined in terms of the eigenvalues of the transfer matrix 
TR of the model. Setting f = exp(-L,/ T )  and x = exp( Lo/ T ) ,  these eigenvalues read 

A,=b,+& A , = b , - &  A>= -b2+& A ,  = -b2 -J& 

with 

(1  - t 4 ) (  1 -x4) (1 - f4) ( l  -x4) 
A ,  = b f -  A , =  b:- 

f 2 X 2  12x2 

and 

(1  + f Z X * ) ( l  +x2) ( 1  - f 2 X 2 ) (  1+x2) 
b, = b, = 

2 tx2 21x2 

As explained in detail in [SI, they satisfy the following inequalities: 

A , < A ,  < O < A 2 < A , , .  

As usual, the largest (in modulus) eigenvalue is positive and can thus be identified 
with A o .  It corresponds to the free energy, whereas the spin-spin correlation length 5 
is given by: 

where lA , l  is the second largest eigenvalue. The sign of A r  determines the nature of the 
short range order, i.e. ferromagnetic for A ,  > 0 or antiferromagnetic for A ,  < 0. In order 
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to preserve effective antiferromagnetic couplings, one decimates with a decimation 
factor b = 3 to obtain four decoupled recursion relations which can be taken to he 

GA;=A; (2.2) 

(2.3) 

The first equation is just the usual recursion relation for the free energy per spin, with 
G a function of the couplings. The second recursion relation has a fixed point at zero 
as A. is the largest eigenvalue. This leaves two recursion relations of the form x'=x' 
with stable fixed points at 0 and *q and unstable fixed points at i l .  

A portion of the renormalization group flow is shown in figure 2. Although the 
system is always paramagnetic, there are two different paramagnetic sinks denoted S ,  
and S,. Systems attracted to the former are characterized by short-range ferromagnetic 
correlations (A,  = A2) ,  while those attracted to the latter display short-range antifer- 
romagnetic correlations (A, = A3).  These two flows are divided by the disorder line DA, 
whose equation reads: A 2 =  -A3.  That the disorder line is an invariant subspace of the 
renormalization group transformation is immediately seen from the recursion relations 
above (i.e. if A2JA3=-l, then A & J A ; = - l ) .  The existence of this disorder line is 
guaranteed by the symmetry of the partition function Z(L,, L,) = Z ( - L o ,  -L3).  Indeed 
the transformation (Lo, L3)+ (-L,, -LJ corresponds to (x, I ) + (  l/x, I/!), which pre- 
serves A. and A ,  and interchanges A 2  and A , .  The point D is a singly unstable fixed 
point which characterizes this separatrix in the flow much like the separatrix at zero 
magnetic field in the ferromagnetic king model. There are, in fact, several examples 
of the existence of distinct paramagnetic sinks in systems with many interactions [12]. 
Although separatrices divide the flows and are therefore controlled by fixed points 

Figure 2. Portion of the renormalization group Row applicable Lo the model with positive 
values of Lo and L, . 
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with at least one relevant eigenvalue, there are no singularities in the free energy due 
to the vanishing of the amplitudes associated with the relevant fields. 

One may also consider the crossing of other eigenvalues. For instance, on the line 
AS,, the magnitude of A t  becomes equal to A 2 ,  so that one has A o > / A , 1 > A 2 = / A I I .  
Below this line the energy-energy correlations are ferromagnetic in character, while 
above it they are antiferromagnetic. Such a behaviour is found in other models [13, 141. 
The line A T  is also interesting in that the second largest eigenvalue changes from A,,  
which is negative, to A , ,  which is also negative. That is, the order remains antiferromag- 
netic. This unusual disorder line cannot be crossed given the parameters of the original 
model, but can he in the generalized version considered in [8] and [ I l l ,  a version 
which contains additional two-spin interactions across the diagonals of the basic 
rectangle and a four-spin interaction around it. We expect this behaviour to occur 
whenever there are several interactions which promote the same kind of order and 
have relative strengths that can be varied. Along the line AB, this same kind of behaviour 
is found in the energy-energy correlation function. 

3. Dynamical effects at disorder lines 

3.1. Introduction 

Following Stephenson [4], we shall study the one-dimensional king examples shown 
in figure 3. We take in both cases J, > 0, J2 < 0; moreover, we restrict the range of J2 
(see below), so that the low temperature paramagnetic phase has ferromagnetic short 
range order. Since we are primarily interested in the paramagnetic phase(s), we use 
the random phase approximation (RPA). Defining a wavevector dependent susceptibility 
,y(k)  through 

X ( k )  =- G(x) e-'& d x  (3.1) 

where G(x)  is the spin-spin correlation function (S(O)S(x)), one gets the following 
results [7]. 

27r ' I  
(a) The ANNNI chain (disorder point of the first kind) 

1 

T-T',")+41J21(cos k a - -  
x d k )  = 

Figure 3. The one-dimensional king examples studied in Section 3. (a) Thhe A N N N I  chain 
(nearest-neighbour and nert-nearest-neighbour interactions). ( b) The decorated chain with 
alternate interactions (every other spin has next-nearest-neighbaur interactions). 
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where 

is the disorder temperature, and a is the lattice spacing. 

kind). 

(a) and ( y ) .  With the same notation, close to the disorder temperature Tb"', we have 

(b) The decorated chain, with alternate interactions (disorder point of the second 

Decime!ing spin (9 )  in f;,gure ? ( 6 ) ,  we get an effective intt.ractinn bctPicen spins 

2J2+T ' , ' l n (2cosh3)  = O  

(3.4) 

(3 .5a)  

and B is given by 

B = 2 a  tanhZa-Incosh2m (3.5b) 

In the R P A  approximation, the above-mentioned restrictions on J2 read lJzl < A J , ,  
with a = J , /  Tg'. 

with A = a  (case (a)) and A = 1 (case (b)). 

3.2. 7'he A N N N I  chain 

3.2.1. Statics. We first consider (3.2), which we rewrite, in the continuum limit, as 

with re= T-Tg 'and  (koa)2=2((J , /41Jz1) -1) .  Theasymptoticbehaviourofthespin- 
spin correlation function G(x) ( 3 . 1 )  can be obtained by a simple rescaling of the 
variables. Setting X = x/alJ21-"", K = kalJ,11'4, KO= /~ , ,a lJ~1' /~ ,  we get !he following 
behaviour at large distances ( X m / 2 K O > >  1 )  and close to T',"' (Iral small): 

(3 .7a )  

(3 .76)  

?r 
(iii) 7.=0 G , ( X ) = 7 X  e-KoX. (3.7c) 

2Ko 

These expressions are valid, provided that 

(3 .8a)  

and 

(3.86) 
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Condition ( 3 . 8 ~ )  implies that T:"' (in the RPA scheme) and 7'g' are well separated 
since T g ) -  T$"=+K: .  Condition (3 .86)  implies that 

(3.9) 

FOI Tg'=2T:"',  we get 

which is not too stringent a condition for, e.g., T=+Tg' and T=tT',"'.  

3.2.2. Dynamics. Having recalled some known facts about T g ) ,  we now consider the 
following Langevin equation for the time-dependent k mode of the magnetization S: 

with (~~(1)~~.(1'))=2TuTSkk~~(f - 1 ' ) .  Using (3.10), we obtain the ( X ,  w )  spin-spin 
correlation function 

(3.11) 
eiKX 

Y ( x , w ) = ( s ( x , w ) s ( o , o ) ) =  1 0 2 + [ ~ , + ( K 2 + K o )  2 2 ] 2dK 

where X and K are given above. With the use of equations (3.7),  we now get for the 
w = O  value of Y ( X ,  w )  at large X and close to Tg' (cf (3 .9) ) ,  

1 
(ii) 7. < 0 Y ( X , w = O ) = -  x e-x/b- (3.126) 

71 

3 2 K i  m 
where #- is the correlation length below Ti;', and 

(iii) ro=O Y(x, w = 0) X' e-KoX. ( 3 . 1 2 ~ )  

The disorder point (ro = 0) is thus characterized by an asymmetric behaviour of the 
correlation function Y(X,  w = 0), since, for large X ,  sin u x / u  behaves like S ( u )  [see 
(3.12a)l .  The 'large X '  behaviour is given in (3 .86)  and the vicinity of Tg' i n  (3 .8a) .  
We note that this asymmetry in a dynamic correlation function is not unexpected since 
the slope of the static correlation length 5 is infinite for ra + O-((-)  and finite for 
r,, + O'(5,). The diffusion coefficient should therefore be asymmetric with respect to 
ra+O. A similar result would be obtained by using the exact (static) solution [ 4 ] .  

3.3. The decorated chain with alternate interactions 

More direct calculations are possible in this case, due to the simple form of (3.4).  In 
particular since #= 0 at Tg',  with a vertical slope on both sides, we obtain a vanishing 
diffusion coefficient at the disorder temperature. In this case, it is also possible to 
characterize T',b' as a point where the distance between two spin configurations 
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submitted to the same thermal noise [ 151 is slower than in the rest of the paramagnetic 
phase. Let us consider two such spin configurations, which we label by indexes 1 and 
2. Equation (3.10) reads 

(3.13a) 
JS:' _- - -ro(Xh(k))-'S:)+ % ( t )  
ai  

JSY' 
at 

(3 .136)  _- --ro(Xb(k))-'S(X2)+ 1 1 k ( t ) .  

Defining pk = S f )  - Si2), we have 

& * ( f )  = p k ( o )  e-ro(xD(k)'-',. (3.14) 

The distance between configurations ( 1 )  and ( 2 )  is defined as 

(3 .15a)  
1 
L ,  

1 
L ,  

d ( t ) = - I { S ( " ( x ,  t ) -SI2' (x ,  t ) } 2  

(3.156) 

with p ( x ,  t ) =  l / L Z k p k ( t )  e'". Here L i s  the size of the system (due to our convention 
as given in figure 3 ( b ) ,  we take the original lattice spacing a to be one half) and k 
belongs to the first Brillouin zone [-v, a]. Note that the above definition yields 
d ( t ) - O ( l / L )  if configurations ( 1 )  and (2) differ by a finite number of spins. We 
therefore get 

=-z P2(X, t) 

(3.16) 1 -21'o?(x,,(kll-c d ( O = F Z  p k ( o ) p - k ( o )  e 
k 

At T =  Tg ' ,  we have (Xh(k))-l = Tg'. The distance d ( t )  then reads 

1 
L ,  

d([)=d(0)e-2""'=e-2'L.'- I P 2 k  0) (3.17) 

with flo= ToTr'. For T smaller (resp. larger) than Tg' ,  the effective interaction between 
spins (a) and ( 7 )  offigure 3 ( b )  is ferromagnetic (resp. antiferromagnetic). We therefore 
expand, to lowest order, the k dependent pan  of Xh(k) (see (3 .4) )  around k=O (resp. 
k = a). We get 

with a diffusion coefficient Dh =4roBE( T g ' -  T) (resp. Dh = 4 r , B (  T- T g ' ) ) .  In the 
continuum limit, the discrete sum over k becomes 

L j + v  d k  eik(x-x ' l  e-Ubklz 

2T -~ 

which, for f large ( I  >> ( Dh)-') ,  is well approximated by extending the limits of the 
integral to infinity. We thus obtain 

for t large. 
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Choosing for instance p(x ,  0) = S"'(x, 0) - SC2'(x, 0) = S,, (the configurations differ 

(i) T =  7$L'(Db=O) 

by a single spin), we find for large times 

d (  t )  1 (3.20) L 
(ii) T f T$)(  Db # 0) 

(3.21) 

which shows how the dynamics is 'slowed down close to a disorder point of the second 
kind. 

Thus by using the RPA, which should be quite accurate in the high temperature 
phase, we have exhibited one dimensional models where some dynamics is sensitive 
to the occurrence of a disorder point. 

4. Conclusion 

We have considered some aspects of disorder lines, both from the RG and RPA points 
of view, in simple one-dimensional models. We have shown in particular that they 
may have interesting effects on the dynamics. This certainly can be extended to higher 
dimensional models where disorder lines play an important role [16]. 

Acknowledgments 

One of us (MS) expresses his thanks to the SPhT, CEN Saclay, for their kind hospitality 
during the course of this work. It was supported in part by the National Science 
Foundation under grant no. DMR8916052. 

References 

[I] Stephenson J 1969 Con. I .  Phys. 47 2621 
[2] Fisher M E and Widom B 1969 I .  Chem. Phys. SO 3756 
[3] Batchelor M T and van Leeuwen J M J 1989 Physica 154 365 
[4] Stephenson J 1970 Can. 3. Phys. 40 1724 
[SI Stephenson J 1970 3. Math. Phys. 11 420 
[6] Gompper G and Schick M 1990 (unpublished) 
[7] Garel T and Maillard J M 1986 I. Phys. C: Solid State Phys. 19 L505 
[8] Garel T, Niel J C and Orland H 1990 Europhys. Lett. I 1  349 
[9] h a r i a  P, Diep H T and Giacomini H 1989 Europhys. Letr. 9 755 

[IO] Le Doursal P and Harris A E 1988 Phys. Rev. Left. 61 625 
[ I l l  Homreich R M, Liebmann R, Schuster H G and Selke W 1979 Z. Phys. B 35 91 
[ I21 Berker A N and wonis M 1976 Phys. Rev. 14 4946 
[I31 Thorpe M F and Blume M 1972 Phys. Rev. B 5 1961 
(141 Wang Y-L, Lee F and Kimel J D 1987 Phy.r. Rev. B 36 8945 
[IS] Derrida B and Weisbuch G 1986 1. Physique 47 1297 
[I61 Gompper G and Schick M 1989 Phys. Rev. Left. 62 1647; 1990 Phys. Rev. B 41 9148 


